

JA-003-001616

Seat No.

B. Sc. (Sem. VI) (CBCS) Examination

August - 2019

Mathematics: BSMT-601(A)

(Graph Theory & Complex Analysis-2)

(Old Course)

Faculty Code: 003 Subject Code: 001616

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

Instructions:

- (1) All questions are compulsory.
- (2) The right side figure indicates total marks of the question.
- (3) Draw the figure wherever necessary.
- (4) Write answers of all the questions in main answer sheets.
- 1 Answer the following question:

- (1) Define: Region of Convergence series.
- (2) Expand cosz in Taylor's series for $z_0 = 0$.
- (3) Define: Partial sum of sequence.
- (4) Find residue of $f(z) = \frac{z+2}{(z-1)(z-2)}$ at $z_0 = 1$.
- (5) Define: Zero complex function.
- (6) Find the residue of $f(z) = \frac{e^{2z}}{z(z-1)}$ at simple pole of f(z).
- (7) Define: Rotation mapping.
- (8) Find critical point of $w = \frac{z-1}{z+1}$.
- (9) A bilinear transformation $w = \frac{az+b}{cz+d}$ having only one fixed point is called ______.
- (10) Residue of f(z) at a simple pole z = a is ______.

- (11) Define: Forest and Minimal connected graph.
- (12) Define: Vertex disjoint subgraph and Edge disjoint subgraph.
- (13) Define: Level with an example.
- (14) Find the number of edge-disjoint Hamilton circuits in a complete graph with 7 vertices.
- (15) How can we obtain the subgraph from the graph give with example.
- (16) Define: Chromatic partitioning.
- (17) Define: Label, give with example.
- (18) Define: Height of the tree with example.
- (19) Define: Adjacency matrix and give its example.
- (20) Define: Minimal covering of G.
- 2 (a) Answer the following questions: (any three)
 - (1) Prove that number of edges disjoint Hamiltonian circuit in complete graph K_n is $\frac{n-1}{2}$. Where n is greater than three.
 - (2) A connected graph G is Euler graph if and only if it is decomposed into circuit.
 - (3) (a) Find the Rank (r) and Nullity of complete graph (μ) .
 - (b) Prove that $e \le 3n-6$ is only necessary but not sufficient.
 - (4) Define: Closed walk and circuit with an example.
 - (5) A graph G is tree if and only if it is minimal connected graph.
 - (6) Define: Minimal dominating set and Domination numbers.
 - (b) Answer the following questions: (any three)
 - (1) Number of edges in tree with n-vertices is (n-1) edges.
 - (2) (i) State and prove First theorem of graph theory.
 - (ii) Let G is K-regular graph. Where K is odd number. Then prove that number of edges in G is multiple of K.

9

- (3) State and prove necessary and sufficient condition for graph G is connected.
- (4) Define: Isomorphism of two graph deduce that graphs are not isomorphic.
- (5) Explain Konigsberg bridge problem and the solution given by Euler.
- (6) Prove that (W_{Γ}, \odot) is commutative group.
- (c) Answer the following questions: (any two)
 - (1) (i) Let G is simple graph, it has n-vertices and k-components then prove that G has at least

$$\frac{(n-k)(n-k+1)}{2}$$
 edges.

- (ii) State and prove second theory of graph theory.
- (2) State and prove Euler theorem.
- (3) Explain Konigsberg bridge problem and the solution given by Euler.
- (4) If G is a graph with n-vertices, e-edges, f-faces and k-components then show that n-e+f=k+1.
- (5) Define: Proper colouring of a graph. Prove that every tree with two or more vertices is 2-chromatic.
- 3 (a) Answer the following questions: (any three)
 - (1) Define: Rotation and Inversion mapping.

(2) Prove that
$$\frac{1}{z^2} = \frac{1}{4} + \frac{1}{4} \sum_{n=1}^{\infty} (-1)^n (n+1) (\frac{z-2}{2})^n$$
.

- (3) State and prove necessary and sufficient condition for complex sequence (Z_n) to be convergent.
- (4) Show that x + y = 2 transform into the parabola $y^2 = -8(y-2)$ under the transformation $w = z^2$.
- (5) Find the critical point of the transformation $w^2 = (z-a)(z-b)$.
- (6) Show that the transformation $w = \frac{1+z}{1-z}$ maps the region $|z| \le 1$ of z-plane into $R_e(W) \ge \theta$.

10

Answer the following questions: (any three) (b)

If
$$z_o$$
 is the mth order pole of complex function $f(z)$ then prove that $\operatorname{Res}(f(z),z_0)=\frac{\phi^{m-1}_{(z_o)}}{(m-1)!}$, here $\phi(z)=(z-z_0)^m f(z)$.

- Prove that $\int_0^{2\pi} \frac{d\theta}{5 + 4\sin\theta} = \frac{2\pi}{3}.$ (2)
- State and prove Cauchy's Residue theorem. (3)
- Prove that $\int_0^\infty \frac{x \sin ax}{x^2 + k^2} dx = \frac{\pi}{2} e^{-ak}; a, k \ge 0.$ (4)
- (5)Find the Mobius maps which transforms the vertices of $\triangle ABC$ where A(1+i), B(-i), C(2-i) of z-plane into $\Delta A'B'C'$ where A'(0), B'(1) & C'(i) of W-plane.
- Prove that $e^{z} = e + e \sum_{n=1}^{\infty} \frac{(z-1)^{n}}{n!}$.
- Answer the following questions: (any two) (c) 10
 - State and prove Taylor's infinite series of an (1)analytic function f(z).
 - Using residue theorem prove that $\int_0^\infty \frac{dx}{x^4 + 1} = \frac{\pi}{2\sqrt{2}}.$ (2)
 - (3)In usual notation prove that $\cosh (z+z^{-1}) = a_0 + \sum_{n=1}^{\infty} a_n (z^n + Z^{-n}).$
 - Prove that the transformation $(W+1)^2 = \frac{4}{}$ (4) transforms the unit circle of w-plane into the parabola of z-plane (|w|=1).
 - Show that the composition of two bilinear maps is again a bilinear map.